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Abstract 
 
Monomers and resins used in the foundry industry are being investigated for use with locally 
available aggregates for making polymer concrete for rapid repairs of concrete pavements and 
runways.  The polymer concrete has the ability of setting in a wide range of ambient 
temperatures and can be made with some moisture in the aggregate.  Tests are being performed 
to determine curing times, flexural strengths and moduli of elasticity at different temperatures 
and times.  Analyses of the repairs are being conducted to determine the stresses in the repairs 
using a wide range of assumed base and loading conditions.  The results of the research will 
permit the thickness of the repair to be determined for the range of expected conditions. 
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1. Introduction 
 
The research was initiated with the objective of making rapid repairs of pavements and runways 
using locally available aggregates that are “less than ideal.”  Monomers and resins that have 
proven very effective in the foundry industry as binders for sand molds are being used. A test 
program is underway to determine mechanical properties and curing time at different temperatures 
and for different moisture levels in the aggregates.   
A structural analyses using pavement software is being conducted to determine the flexural 
stresses resulting from wheel loads of two different military aircraft applied at different locations 
on the repair.  Different base conditions for the repair are being considered.  Flexural stresses are 
determined for the different variables.  From the testing program and analyses it will be possible to 
determine the required repair thickness for a wide range of conditions. 
 
2. Materials 
 
2.1. Monomers and Resins 
Monomers and resins used in the foundry industry were selected for use.  Six different mixtures 
were initially selected and reduced to three after initial testing.   
 
2.1.1. PUB1 / PUB2 (aromatic polyurethane) 
PUB1 and PUB2 were used in a 55:45 ratio based on weight.  In addition to adding the resin to 
sand, a catalyst must be used with these polymers. 
 
2.1.1.1. PUC1 and PUC2 (phenolic urethane catalyst) 
Of the two catalysts to be used with this combination, PUC1 is the fastest.  While PUC2 does slow 
the polymerization down, there is not a significant difference in the two catalysts.  Both catalysts 
were used at a level of 1% based on weight. 
 
2.1.2. AUB1 / AUB2 (aliphatic polyurethane) 
The AUB1 was added to the sand first, and then the correct amount of AUB2 was added.  These 
two components were added to the sand at a 1:1 ratio based on weight. AUB1 contains a built-in 
catalyst.   
 
2.1.3. FB (furan no-bake binder) 
The furan no-bake binder system consists of a reactive furan-type resin mixed with an acid 
catalyst.  Extreme care must be taken so that the undiluted resin and catalyst do not come into 
contact with each since would result in a very violent reaction.  The catalyst was mixed with the 
sand before adding the resin; 25% catalyst (based on binder weight) was used.  FB was used with 
two different catalysts.   
 
2.1.3.1. FC1 and FC2 (furan catalyst) 
Many samples were mixed for testing using different ratios of resin to sand.  The catalysts reacted 
similarly except for the time required for set.  FC2 is the faster of the two catalysts.   
 
2.1.4. SSB (sodium silicate) 
Also known as waterglass, sodium silicate is an inorganic chemical made by combining various 
ratios of sand and soda ash at high temperatures.  The catalyst, SSC, is used in the amount of 10 to 
20% based on weight of SSB.  
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2.1.4.1. SSC (sodium silicate catalyst) 
This material developed the least strength of all the polymers tested. 
 
2.2. Aggregates 
Several aggregates have been tested with these polymers.  Initially, fine aggregate mortar bars 
have been tested; tests will be conducted using coarse aggregates.  The different sands have 
different mineral compositions as well as grading.  The results of sieve analysis tests (in 
accordance to ASTM C136) for the sands are provided in Figure 1.  Before testing the material, 
the sand was dried in an oven at 101°C for at least 24 hours.  For some tests, a specified amount of 
water was added to the dry aggregate. 
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Figure 1. Sieve analysis results for sand 
 
The methylene blue test was performed on the minus 75 µm portion of the sands to determine the 
amount of impurities in the aggregate.  Higher values indicate more impurities.  The methylene 
blue test is based on the AASHTO Designation TP57-99 [1].  Table 1 shows the results. 
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Table 1: Methylene blue test results 
 

Sand Reading Value 
Natural Beach Sand 1.0 0.5 
Natural Silica 2.5 1.25 
Crushed Granite 2.0 1.0 
Crushed Basalt 3.0 1.5 

 
3. Properties of Polymer Concrete 
 
Tests were performed on polymer concrete made with different combinations of monomers/resins 
and sands in order to determine polymer properties.   
 
3.1. Thermal Readouts 
A data logger was used to determine the temperature of the mix time over time.  Two mixtures 
were tested at one time.  Thermocouples were inserted into the mixtures and readings were taken 
every one to three minutes beginning with the addition of the last mixture component.   
A summary of the results is provided in Table 2.  The peak time corresponds to the amount of time 
until the peak temperature was reached.  Both SSB and FB were determined unworkable.  SSB 
never set after 24 hours.  FB both set too quickly and was difficult to work.  Even before peak 
temperature was reached, the reactions were visibly exothermic. 
 
Table 2. Summary of average peak time and temperature for initial set of polymer mortar sample 
 

PUB1 / PUB2 w/ PUC1 15-20 min 30-50°C 
PUB1 / PUB2 w/ PUC2 10-15 min 35-50°C 
AUB1 / AUB2 10-15 min 50-60°C 
SSB w/ SSC 0 min 20-25°C 
FB w/ FC2 1-6 min 60-120°C 
FB w/ FC1 25-30 min 65-80°C 

 
3.2. Flexural Strength Testing 
Beams 51 mm by 51 mm by 305 mm (2 in. by 2 in. by 12 in.) were cast from the resin/sand (1:4) 
mixtures using metal dual molds.  The binder was mixed with the sand about one minute after 
adding the catalyst (last added).  The mixture was transferred to the molds and finished.   
The mixtures stayed in the molds until ±15 minutes before testing.  Flexural tests occurred at 2, 4, 
6, 15, 20, or 24 hours after the molds were filled.  Figure 2 shows the strength with time.  All 
mixtures are based on a 1:4 (polymer:sand) ratio.  FB and SSB were eliminated test due to their 
performance in the previous tests. 
Third-point loading modulus of rupture testing was done in accordance with ASTM C78 [2].  
Tests were performed using oven dry aggregates and with the addition of varied amounts of water 
added to the sand.  Mix design 2 is represented in Figure 3 showing the effect of moisture on the 
mix. 
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(a) Mix Design A: PUB1, PUB2, 1% PUC2 
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(b) Mix Design B: PUB1, PUB2, 1% PUC1 
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(c) Mix Design C: AUB1, AUB2 
 
Figure 2. Flexural test results 
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Figure 3. Flexural test results from Mix Design C with varying amounts of moisture 
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4. Stresses in Repair Due to Aircraft Loadings 
 
The objective of this part of the study was to investigate the behavior of polymer concrete repairs 
of Portland cement concrete pavements (PCCP).  The material properties of each layer, anticipated 
loading conditions, and desired quality of repair have to be determined or assumed before the 
stress analysis.  Based on the stress analysis results, the criteria for the thickness for the polymer 
concrete repair considering significant variables are being developed.  In this section, the polymer 
concrete-repaired pavement was modeled to calculate the maximum stress, and then sensitivity 
analyses for variables were performed. 
 
4.1 Modeling of Polymer Concrete Repair 
The maximum flexural stress at the bottom surface of the polymer concrete repairs was determined 
using a practical range of the material properties and loading conditions.  A typical 7.32-m by 
7.32-m (24-ft by 24-ft) polymer repair slab was selected for analysis.  This size has been found to 
be adequate for the stress and deflection distribution for aircraft loading [3].  No load transfer 
between polymer repair and original PCCP was assumed, which represents the real field condition.  
The polymer-repaired slabs with a basic two-layer system (polymer concrete slab and subgrade) 
were considered first to determine the more sensitive variables.  After the identification of the 
more sensitive variables of the two-layer system, the three-layer system (polymer concrete slab, 
polymer treated base and subgrade) was introduced to determine the critical loading position.  The 
material properties of polymer concrete were assumed to be constant using typical values.  The 
elastic modulus of polymer concrete (Epc) was assumed to be 13.7 GPa (2000 ksi), while the 
Poisson’s ratio (νpc) was assumed to be 0.25.  Three variables were examined for the stress 
analysis: thickness of repair, subgrade reaction modulus, and loading locations.  The thickness of 
the polymer concrete repairs ranged from 100 mm to 300 mm (4 in. to 12 in.), using 50-mm (2-in.) 
increments.  Foundation (subgrade and base) properties are usually defined in terms of the 
modulus of subgrade reaction (k).  In this study, k-values of 13.6, 27.1, 81.4, and 135.7 MPa/m (50, 
100, 300, and 500 psi/in) were selected to represent the backfill with a minimum compaction, 
compacted natural subgrade, granular base, and cement stabilized base, respectively.  Figure 4 
shows the cross-section of the polymer concrete runway repair. 
 
 
 
 
 
 

Polymer Concrete Repair
, 

Subgrade
-value

Portland
Cement

Concrete
Slabs

(a) Two-layer system                                               (b) Three-layer system 
 
Figure 4. Cross-section of the polymer concrete repair 
 
The EverFE [4, 5] rigid pavement analysis software was used for the calculation of the maximum 
stress values of the polymer concrete slabs using two designated aircraft loading types: F-15 and 
C-5, the representative users of the facilities.  The F-15 aircraft has two single-tire cartload main 
gears while the C-5 main gears consist of four six-tire cartloads.  Because of the relatively large 
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cartload spacings, the calculated maximum stress was not influenced by an adjacent cartload.  The 
stresses presented in this paper are the results of analyses on a single loading cart for both F-15 
and C-5.  For FEM analysis, the tire contact areas were converted to equivalent tire contact area 
using the PCA method [6].  The footprint of a single loading cart for each aircraft is shown in 
Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
(a) F-15 loading cart                 (b) C-5 loading cart 
 
Figure 5. Footprint of single cartload for stress analysis 
 
To investigate the effect of loading position, the single cartloads from each aircraft type were 
applied at four different loading positions as shown in Figure 6.   
 

 
(a) F-15 aircraft 

 
(b) C-5 aircraft 

 
Figure 6. Vertical gear positions for stress analysis 
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4.2 Sensitivity Analysis Results 
A large range of conditions for variables was originally considered during the sensitivity analysis 
process.  As the study progressed, the stress analyses were focused on the obviously sensitive 
variables, which have a significant effect on the maximum flexural stress values.  The considered 
factors are discussed briefly based on the findings presented in the following paragraph. 
The selected stress analysis results for the two-layer systems are presented in Figure 7.  The 
loading position was the most sensitive factor for the maximum stress.  The long-side edge loading 
(load position 2 in Figure 6) showed the highest flexural stresses, and the interior loading 
conditions showed the lowest values.  The subgrade reaction modulus (k-value) was found to be 
another important factor as shown in Figure 7.  The subgrade stiffness is one of the key factors of 
repair of a damaged PCCP with two-layer system.  In general, the F-15 aircraft loadings produced 
higher maximum stress values than those of the C-5 for both interior and edge loading conditions.  
In summary, the F-15 edge loading condition was found to be the most severe loading case. 
The three-layer system maximum stress calculation results for the F-15 aircraft loading are 
illustrated in Figure 8.  Typical material properties for polymer-stabilized base were assumed.  The 
elastic modulus of polymer-stabilized base (Ebase) was assumed to be 3.5 GPa (500 ksi), while 
Poisson’s ratio of polymer concrete repair (νpc) was assumed to be 0.20.  The application of the 
polymer-stabilized base has great impact on the magnitude of the maximum flexural stress.  Even 
minimal use of the polymer-stabilized base is helpful in reducing the stress in the repair.  In 
addition, the effect of subgrade modulus (k-value) on maximum stress significantly decreased with 
a slight increase of the thickness of polymer-stabilized base.  In other words, the application of the 
polymer-stabilized base can significantly reduce the sensitivity of k-value for the maximum 
flexural stress. 
 
5. Conclusions 
 
Polymer concrete was made using a variety of sands and resins.  Flexural strengths of 10 to 20 
MPa were obtained in a few hours after casting.  Curing times and strengths are adequate for repair 
materials.  Tests using moisture in the aggregate show that flexural strengths are reduced by 40 to 
50% for moisture contents of 0.25%, but strengths are still adequate for use as a repair material.  
The pavement analysis indicated that the most critical location for the wheel loads is at the exterior 
edge.  Required thicknesses were determined for a wide range of variables: repair thickness and 
modulus, subgrade stiffness, and polymer-stabilized base thickness and stiffness.  Two support 
scenarios were investigated: repair over an unbound aggregate subgrade and repair over a  
polymer-stabilized base placed over an unbound subgrade. 
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(a) Interior loading position 
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(b) Edge loading position 
 
Figure 7. Stress analysis results for two-layer system 
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(a) Interior loading 
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(b) Edge loading 
 
Figure 8. Comparison of the maximum flexural stress due to the F-15 aircraft between two-layer 
and three-layer systems 
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